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I
1. Introduction

This report is a portion of the research performed under the
Guidance and Control Technology Program on Automatic Tracking Systems ior
Airborne Direct Fire and Integrated Fire Control. The dynamical systems
equations of the MICOM stabilized mirror/gimbal tracking system are
derived in this report. These equations are derived for the purposes
of (1) analyzing design changes in the basic structure and (2) designing
stabilization and servo control compensations for improved accuracy in
tracking and stabilizing a target scene or in stabilizing a laser beam
in a helicopter environment.

The system consists of an azimuth gimbal, G, mounted in a base
structure, S, such as that of a helicopter pod (Figure 1). The platform,
P, is gimbal mounted in G and rotates in elevation. Mounted on P are
two rate integrating gyroscopes used for inertially rate stabilizing P

via feedback to torque motors mounted on the gimbal axes of G and P.
Figure 2 shows a schematic drawing of the elevation and azimuta gyros
mounted on the platform. The mirror, M, is not mounted on the. platform,
but is gimbal mounted on G with axis of rotation parallel to that of P.

The mirror is connected to the stable platform, P, by a wire belt pulley
arrangement with a 2:1 drive ratio. The mirror is not mounted on the
platform because a stable view of a fixed scene and laser team pointing
stability require the mirror to move one-half the angle of pitch of the
gimbal, G. A 2:1 drive ratio consisting of abelt drive and ar aided inertia
drive can meet this requirement. The inertia drive, or v-hat is mis-
nomered the inertia balancer, B, is a gimbal mounted mas3 with axis
parallel to those of P and M. The balancer, B, is conslructed with the
precise moment of inertia about its axis for "inertially balancing"
the mirror. When the base, S, and the gimbal, G, pitch, the mirror
should move in elevation through one-half the pitch angle so that the
scene does not change when viewing the image of the scene reflected
from the mirror. The "balancer" will accomplish this in the absence
of other forces and is especially useful when the frequeucy of dis-
turbance motion is greater than the bandwidth of the platform stabiliza-
tion loop. Figure I shows the balancer, B, in contact with tne belt
drive and only operates correctly when there is no -,lip between the
balancer and belt.

The equations derived herein describe the moti.on of the gimbal,
platform, mirror, balancer, and gyros with the full nonlinear and
cross-coupling terms and such imperfections as friction, deformation
of the wire drive, and spring coupling due to electrical cables con-
nected between elements of the system. The assocLated feedback and
servo-control electronics, as they are presently designed, are given
in transfer function form in the summary block diagram presented in
Section 3.

Preceding page blank 3
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(a) SIDE VIEW (b) FRONT VIEW

Figure 1. Schematic of rigid body system elements.

2. Equations of Motion for Rigid Body System Elements
a. Analytical Approach

In a system of rigid body elements there are for modeling

purposes, three classifications of interactions of the elements. First,
elements of significant inertia interact with each other and all of their
motion variables (generalized coordinates) are coupled dynamically in

the dynamical equations of motion. Second, if some of the element's
inertias are much larger than those of other elements, the larger iner-

tias are insignificantly affected by the motion of the smaller inertias
so that the dynamical equations of the larger inertias do not include the
effects of the smaller inertias, i.e., the generalized coordinates of the

larger appear in the equations of the smaller, but not vice versa. For
example, the smaller intertij.s of the gyroscopes have an insignificant
effect on the platform's motion. However, platform motion significantly

affects the motions of the gyroscopes. Thus, there are equations of

motion for the platform as well as the gyroscopes but the coupling is

from the platform to the glToscopes and iot vice versa except in the
electrical feedback. Thizd, in a variation of the second classification

is the case when the coupling is one way and the larger inertias have
motions which can be measured and prescribed as a fun, tion of time rather
than described by a systex of dynamical equations. For example, the motion
of a helicopter would not be significantly affected by the motion of

the stabilized mirror/gimbal tracking system so that if we included the

helicopter in the dynamical system (i.e., we determine its motion from

4
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Figure 2. Rate integrating gyro stabilized platform.

its dynamical equations), the effects of the mirror system's motion

would not be included. In this case, however, the helicopter is not
dynamically modeled to determine its motion and, thus, its effect on the

mirror system, but has its motion prescribed from measurement data to
determine its motion's effects on the mirror. In a related program,

linear and angular accelerometers are used to determine helicopter
motion under typical flight profiles with dummy rigid masses simulating
the stabilized mirror system attached.

In this development of the system's dynamical equations we use

helicopter motion data as the ?rescribed motion of the base structure,
S. The base motion can be completely described by three angles and

three coordinates of a point of 8 as functions of time. Herein, we

prescribe the azimuth, elevation, and roll angles *A(t), OE(t), and

0R(t) and the position of a base point x(t), y(t), z(t). These are

calculated from body-fixed accelerometers outputs. The point x, y, z
of the base, S, can be any point of the rigid base structure.

5



However, for laboratory tests, we construct the test stand (on which
the gimbal system is mounted) so that rotational motion is simulated
separately from helicopter translational motion. Figure 3 is a schematic
of the base test stand. This separation is accomplished by designing
the test stand with rotational axes colinear with the system's gimbal
axes. The test stand is mounted with either the elevation axis or the
azimuth axis mounted in bearings in a fixed support for rotational
motion. A large shaker provides the prescribed motion through a rigid
linkage. For a linear motion test, the test stand is mounted directly
onto the haker.

The equations of motion are derived in terms of the prescribed
motion variables 0A' (E' 0R' x, y, z for this case in which rotational

input motion is separated from translational input motion.

The method of analytical mechanics used in deriving the equations
of motion of the system is Lagrange's formulation of D'Alembert's prin-
ciple, i.e., Lagrange's Equations ot First Kind, written as

d K _K
dt - F e ()

where K is the kinetic energy of the system, e is a generalized coor-
dinate, 6 is its time derivative, and Fe is the generalized force of
the system for the coordinate e.

This method is used since it is conceptually straightforward and,
most importantly, it does not require the inclusion of conservative
forces of interaction between system elements and then their elimination.
We are not interested in determining the forces of interaction since
we are interested in only the system's motion under external distur-
bances and not in structural limit design.

The kinetic energy of the system is the sum of the kinetic energy
of its parts. Thus,

KY +  B + Ip + KG + KA + KE (2)

where KA is the kinetic energy of the azimuth gyroscope and KE is for

the elevation gyroscope. The kinetic energy of any single rigid body,
for example, B, can he written as a function of the mass of B, mB, the

angular velocity B of the body B with respect to an inertial frame,

the velocity V* of the center of mass B* of B in an inertial frame,
and the moments and products of inertia of B with respect to B* which

are expressed compactly in the dyadic (or matrix) form IB/B*  Explicitly,
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Figure 3. Schematic of base test stand.
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KBis

B* B* B .. B (3)
B mBV 2- W

where it is implicitly assumed that the axes through B* which define

the moments and products of inertia are parallel to the right-hand set

of unit vectors in terms of B is expressed; i.e., we express

B B B B
_ = 0 ib + w2b + b (4)

1-1l 2-2 43-3
where b1 , b2, b is such a set of unit vectors. Such a set of unit

vectors is sometimes called a basis. Likewise, we can express a vector

such as VB* in terms of components in this or some other basis. In
this basis

V =VBb + +Vb (5)
*3-3

where Vi B is simply the component of VB* in the b direction.

The inertia dyadic is defined by

3 3
IB/B* b IB/B* b

i=l j=l

or in matrix rotation

[/* B1I B 12  B 13  fb I

I(b b b) B Bb(6
-1-=2-3 12 2 23 1216

[:13 B:23 B 3 J kb/
where, for a simplier rotation, we have

I B/B*11 1

I B etc.
12 12

The kinetic energy of each rigid body in the system can be derived in

this manner.

8



b. Kinematics

The kinemrtics of both the gimballed mirror, platform,
and balancer system and the gyroscopes are developed in this section.
Generalized coordinates are selected such that the dynamical equations
of motion will be simple. The outer gimbal motion is described in terms
of angles with respect to the base which has prescribed angular and
translational motion. The other elements of the system have only
angular motion with respect to the outer gimbal or an inner gimbal.

The angular velocities of each rigid body of the system and the
velocities of the mass centers of each body are now derived. These are
used in Section 2.c. in determining the generalized inertia forces.

(1) Gimballed Mirror, Platform, and Balancer. With the
base, S, having prescribed motion, the only generalized coordinates
required to specify the motion of the system, G, P, 4, and B, are those
of the system relative to the base. Thus, we take the generalized
coordinates

eG: angle of rotation cf G relative to S

e angle of rotation of P relative to G

eM: angle of rotation of M relative to G

0 angle of rotation of B relative to G

3o that if the base's motion is known, the motion of every point of
the system is also known.

The system is designed so that if the base is level and a TV
camera is mounted on the gimbal looking vertically down at the mirror,
the TV will see a scene forward of the system. Thus, eM is chosen

to be measured from a line at 45 degrees from the vertical so that under
nominal operation the angles will be small. rigure 4 defines the gener-
alized coordinates and illustrates the TV looking forward at a source of
light.

'Ihe angular velocity of G in an inertial frame is

G S
_ G 3 + W (7)

S
where _ is the angular velocity of S in an inertial frame.

The angular velocity of S is now derived in terms of the base

motion angles relative to an inertial frame, 0 R' E' and 4A and their

derivatives. The derivation of the equations of motion is simpler if

9
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(a) TV CAMERA LOOKING FORWARD
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k m =.a (OUT OF PAPER WHEN G 0)

(b) DEFINITION OF GENERALIZED COORDINATES AND UNIT VECTORS

Figure 4. TV viewing, generalized coordinates, and unit vectors.
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S
W is expressed in components for I' g 3 " For convenience the same

order and direction of rotation of the base is taken as the system rela-
tive to the base. Beginning a rotation in roll of angle 0 R about a

vertical earth-fixed line (the earth suffices for an inertial frame
in this derivation), let i, j, k be an earth-fixed basis with k vertical,
let 11, E2' E3 be fixed in S and coincide with i, j, k before the eR

notation, and let k and K3 be directed vertically upward. Figure 5

illustrates the description of the rotation of S relative to the earth.
The new orientation of S is completely determined by the orientation
of I!, 2, K3 and thus by OR" Next a rotation OA in azimuth is per-

formed. Let a 1 2' a3 be a basis fixed in S during this rotation and

let Kl' 2' 3 remain fixed relative to the inertial frame defined by

, , k; i.e., hold eR constant. After this second finite rotation,

the new orientation of S is completely determined by the orientation of
-1' A2' E3 and thus by both 'R and A . Finally, an elevation rotation

of 0E is performed, and let k!, a2, a3 remain fixed; i.e., hold OR and

0 A constant, while tl' 2' j3 are fixed in S during this rotation. Now,

the orientation of S is completely determined by the orientation of
l, t2 ' e3 and thus by OR' OA" and 0E' and every rotation of S can be

specified by specifying *R' A' and 0E* With these simple rotations

describing the total rotation of S, it is possible to determine the
IS S

angular velocity w w of S in an inertial frame, I, from simple
angular velocities. Observing from Figure 5 that

As + RA + I R e + +  (8)

where, for example, A S is the angular velocity of the S frame (whose
orientation is determined by ' £2' e3) relative to the A frame

(determined by a1, aV2 A3). Equation (8) is an expression for -_S but

is not convenient to use until it is expressed in a common basis. For
this purpose, Figure 5 expresses

A3 SEe 2 + C~E3  (9)

-2 'A21 + CA-2 (10)

a 2 = Ce 2 - E-3 (12)

1I E
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(a) ROLL ROTATION OF BASE, S, AND ORIENTATION OF A BASE-FIXED BASIS rl, r2 , £3

-£3 i.'

a 2

12
OA Aal £

(b) AZIMUTH ROTATION OF BASE, S, AN) ORIENTATION OF A BASE-FIXED BASIS 1,2 , a3

Ae[OE -4

(c) ELEVATION ROTATION OF BASE, S, AND ORIENTATION OF THE FINAL BASE-FIXED
BASIS 1, . . 3

Figure 5. Unit vectors and angles for describing the orientation

of the base, S, in an inertial frame, I.
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where, for example, sE = sin 0E and CA = o CA Now substitute

Equations (11) and (12) into Equation (10) and substitute this result
with Equation (9) into Equation (8). This gives

_S =( R l (RCACE +  ASE)e2 + (ACE -RSECA)e3 (|ito ubsttute nto btain in (13)

Sincee 3 = g3'el = CGpl - sG&2, and e 2 = SG&i + CGE2 , it is possible

to substitute Equation (13) into Equation (7) to obtain w in the
a2 , &3 basis as

G 03s.G + S0 G S) + G F-3

G G G-- l 2&2 + 0333 (14)

where we define

S *E *RBA

IdS2 ;RCACE + A s E

= s C (15)W A E R ECA3

Since

M I M = GM I + I G
_W W W + _ eMl _ (16)

P I P G P I Ge + I G
-w --- + w I G - (17)

03 (A (1)+ -0(18)

M P
it is possible to determine uM and wP in their respective bases by

IG B
expressing Iw in these bases. There is no need to express _3 in the
b, b b3 basis since the "balancer" B is symmetrically constructed

about its axis of rotation and its inertia properties do not vary with
respcct to the &1', F2 3 basis with rotations of B. Thus, since

13



= - -f2. = +Y-2 CPP2 -sPP3 C-2 sai-3

== 2 + CP-3  _ + ca_ (19)

where a = 45 deg - OM, and Equation (16) can now be written iii the m

M2, M 3 basis and Equation (17) in the pI, p2, p3 basis. Substitution

of Equations (19) into Equation (16) gives

It + G~ + G s() n

= 1ILm + M a2 4-
" ' 3 m3  " (20)

Similarly, Equations (17) and (18) become

= + P1 + C~w2 + sr "3) P2 + -Cp P 2.3

P P P21)= P-l 1 + '02 P-2 + 0)3 P-3 (

B + &I +  G &2 +  G B B B

(22)

In the beginning of Section 2.b., it was mentioned that the system
is designed so that the mirror will have an orientation of 45 degrees
with respect to the gimbal. With no torque motor power and no distur-
bances, the mirror-platform-wire drive is statistically balanced to
seek a 45-degree orientation from vertical. This is accomplished by
having the mass centers of M, say M*, and P, say P*, displaced from
the axes of rotation of M and P. Let m be the position vector of M*
from the center of rotation of M, say Mo . Likewise, let p be the posi-

tion vector from P to P*. It has been observed that
0

R = m m 2  (23)

P-= P2 (24)

where m and P are the scalar distances.

14



r Figure 6 gives the geometry of centers of rotation, centers of
masses and vectors between these. These are now used to compute the
velocities of mass centers. If PI and P2 are two points of the same~~~rigid body, B, then P ~ 2P

iB

where p is the vector from PI to P2 " Thus, it is possible to write

V 0 + ( X m (25)

where
M GV V=V + W ×m

and

+ v + W X (26)

where
P G

V_ 0 Vo + G x .-

Previously, x, y, and z were allowed to be any point of S for prescribing
its motion. Taking that point to be the point G0 which is common to S

and G and fixed in both. Thus,

G
V Vg e + V + 3 e V

V- 2 --:2 V3 -3 GI 1 VG2  VG3

(27)

wherein V, V2, V3 are computed from base-fixed accelerometer data.

The vectors m and p can be expressed as

m= m2 Y2 + m3 Y3

so that

G G0 . m23 WI G G
G2 in (m3 mw'2 m2 m3 12 + m2)l (28)

15
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)* G* MO

Figure 6. Centers of rotation, centers of masses,
and their position vectors.

G ( _ G) y P3 WY2 + P2l ." (29)

From Equations (20) and (23) the following is derived:

M M- I [3 - M "
W X M = -fn ( i 3 E '. I = -m... 3  F-11 (sa2 + cr&,JI

(30)

Likewise, Equations (21) and (24) give

& × X£= P W P 1 "p1 R (31)

At this point V and V can be expressed in terms of the generalized
coordinates, their rates, the prescribed motion A' SA' E' E' R' R
VI, V2, V3 and a common basis. The basis yI, &2' R3 is a convenient

basis. On substituting Equations (27), (28), and (30) into Equation
(25) the result is

el. = (VG m3 - m)- + VG2 -m3' ms, M R2
3 2 2'3 3' 2 1 cl

+(V; + m2  +mC l ) 3  " (32)

16



Similarly, from Equations (26), (27), (29), and (31)

P* G GP
V + P3+ -

G P2 - '2 3  '3 3

is obtained. Likewise, for VG  similar terms are obtained but with g

and g3 nstead of, say, P2 and P3 and with P = 0. Since B* coincides

with B0,

B G+ o Go + PG

P G p -&

+ (V ; 3 w~ ++v ~~. 3 (4

(2) Kinematics of Gyroscopes. The gyroscopes are mounted

on the platform, P. One gyroscope has its sensitive axis parallel to
the axis of the gimbal, , to sense azimuth rates. The other gyroscope

has its sensitive axis parallel to the aixis of the platform, P, to sense
elevation rates. A schematic of each gyroscope is shown in Figure 7.
The gyroscopes are single degree-of-fredom rate integrating gyros with

their gimbals mounted on the platform, P. The gyro's rotor Ri, i1l, 2,

is motor driven at a constant rate w with respect to the gyro gimbal Ci.

Thle rotor is symmetric about its axis of rotation so that all lines
through the mass center, R , and perpendicular to the rotation axis are

principal axes for R . The center of mass of Ci, C , coincides with Rl.

Th e generalized coordinates of the siagle degree-of-freedom gyros in an
inertial frame are i., i1l, 2, and the coordinates of the platform, P.

The angular velocity of the rotour Ri is

Ri C
=-- ciQj (35)

40

17
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(a) GENERALIZED COORDINATES AND VECTOR BASES FOR THE AZMUTH GYRO.

P2

CF,~

GG

'SS

(b) GENERALIZED COORDINATES AND VECTOR BASES FOR THE ELEVATION GYRO.

Figure 7. Schematics of azimuth and elevation gyroscopes

mounted on platform.
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The gyro gimbals have angular velocities
C I
1l P

S - -I(36)

C2 P
-+ 2-23 (37)

P
Previously, w was determined in the p1, p2, p3 basis. From Equation

(21) the following is obtained in the CII C_2, C13 basis:

_Y !_cli + - oSl_ + 2 + c 3  . (38)

Likewise, in the _21, _22 , -23 basis,

-= (C + + - )22 + -23" (39)

Finally, note that the velocities of the mass centers R* and C do

not deoend on and

c. Inertia Forces

D'Alembert's principle states that a reference frame
exists such that the system's active forces with the inertia forces in
the frame are a zero force system. This frame is called an inertial
frame. If certain forces of interaction within the rigid-body system
ire not to be determined, then the use of D'Alembert's principle is
worthwnile since standard operations on zero force systems in statics
allow one to equate moments about any point to zero. (We take moments
about pcints on lines of action of forces that we wish to eliminate
from the dynamical equations and thereby reduce the number of unimpor-
tant variables.)

Lagrani-e's formulation of D'Alembert's principle allows one to
eliminate all unnecessary forces of interaction dire-ztly without using
time-consuming algebraic elimination methods.

(1) Lagrange's Form of Inertia Forces for Gimballed
Mirror System. In this section, we shall deal with only inertia forces
which are derived only from properties of the system's elements and

kineriatics. The generalized inertia forces of Lagrange are given by

K d K
Fg 7@ - T 7 (40)

19



where e represents each of the generalized coordinates. To determine the
generalized in~rria forces in terms of the generalized coordinates,
their derivatives, and the prescribed motion it is necessary tc deter-
mine K/30 M, ?K/ IM, &/30p, etc. where K is given by Equations (2) and
(3).

If the basis for each body of the system has unit vectors parallel
to principal axes of inertia of the body for its mass center, then the
products of inertia in Equation (6) are zero. The system is designed
so that an axis of rotation of an element is precisely parallel to a
principal axis of the body for its mass center. Thus, the kinetic
energy of each body can be written as

SB21
B* 2 1 ) + Bi(wi)  (41)

since the products of inertia, B12 , B23, etc., are zero. We now take

the partial derivatives of the total kinetic energy [Equation (2)] with
respect to the generalized coordinates. Since some of the velocity and
angular velocity components are not functions of all of the generalized
coordinates, we have

3 3

UK/IM mM V VMe + M M M  (42)
i1l i=l

3 3
SB- B' B B

6K/aeB mB E Vi ie B+ B i 0B (43)
i=l i=l

3 3

63K/60 mp X .V + P. W Wp= ii)ep iO
i1 e i=l

+ %/0eP + 6KA/60P (44)

3 3

V G* V G* + ' .' G G
G = mG i i,0G G

i1l i1l

3 3
+mM M*  M MSiO G + i oi to.0G

i0

20



3 3
+ ' BBV* VB* + BWB B
+m., e G +X e BW

3 3

+m V. V. + P
i i l i 'l

+ 3NE/3eG + 3KA/3eOG (45)

Terms in Equations (44) and (45), such as o'KE/30% and 3A/6G'are

due to the elevation and azimuth gyroscopes. They are insignificant
compared to the other terms and will not be included until the gyro-
scopes' inertia forces are derived in Section 2.c.(2). Tha task now
is to express the terms in the summations as functions of the general-
ized coordinates. From Equation (32), the following is derived:

VM* m I )=m M

V2 0  -m G)= _wj-m Mw (46)

V 2,0 M a M + 10 a

3,0 all M 1 I s

G G
V ~ 2 1,0 G 3 2 10 G m 2,

V - (m - ms) WG

V M - -V 1C-~~ G fli (47)

G-v -i 3 -ins w2

0 0 (inCa + in2 ) wi ~ 2 (in2  )
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The partial differentiation of components of Equation (14) with respect
to 0 Gresults in

G G
W1,0 G=WS 2CG WS IG W2

(2 G S2 1

G 0

2,0 S 1(8

G 2 G1

G

DFfromEntation of1) Eticn (20)win givsoband

13,0 =

N CG G M (49)
2,e W P ~ P" P' 3

WN - G CG N
3,0 P 2 P I 2 -2
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P G G

(A) G C C;G (52)
2el G 'P 2,0 PG P

PG Gj
(3@G ,0 G -C- (52.10)

P G P

Differentiation of Equation (22) gives

B B B

,e 2, 0B = '3,eB 0 (53)
B 'B =B

B G G

2, G "W2, - (54 )

B G 0

The differentiation of the components of Equation (32) with respect to
0 and G results in

p G

V P *  = C - VlS G + C = - -P)

- - ( G + '2~p

2G G (P3  PS)w2,

if -Vs =P( + WIGV PCPW P 3  (55)X

G P* 1 P

V P* =VC-Vs+( sG V (

V3,* G =(P 2  - PC ) 0  = (P2  - PCp) G
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Similarly, Equation (39) gives

VB* VB* = B* =0 (57)
V,0B 2 ,eB 3 B

B* G
V * V C -V s + b G

,eG 2 G I G 3 ',

=V ~b WGG 3 12

V 2G -V s -VC - b (58)
20G 2IG 3l1,e G

=-VG b3
G 32

V B* bwG bwG
V3 = b2 1 .1 = b 2 2

The substitution of Equations (32), (46), (20), and (49) into
Equation (42) results in

6K + G G M\W355 mM m IG m3 J 2 -m2"3 3 )2

" (VG - m3 °l) Ca i + (V 3 + m2 l sVI

+ (M2  M3 ) M M3 (59)

From Equation (43) with Equations (22), (58), (34), and (57), the
following is obtained:

_B = 0 .(60)

B
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From Equation (44) with Equations (21), (56), (33), and (55) ana with
E/6p =3KA /30P = 0, the following is obtained;

60P - (V G 3 3

S p G) P

+ (P2- P3 )  P P 0)s)

With K00= 0, the substitution of Equations (14), (48),

(32), (47), (20), (50), (34), (38), (22), (54), (33), (56), (21), and

(52) into Equation (45) results in

U+ G) G G+ G G(G G

+ (m + M G V + mg G ( G
G~~ 2[2I. 2+ 3\31 2 1 2 1

mM{(2 +3 mM m G]

3 (VGi2n- (m3 -ms,))] [ySIVG+ 3 + }s)2
. + (2 2) G43 G~*u
+ M (b, P + -'4~ (B + C

I lM (M2 "'3) Casa1c3l 1 M1 - 2¢ "3ac "l1 '2

Vb )] G+ GG
G 2 V3 b203 31 b3 m3 G + b13 . BleB12  (BI  B2) WlC2

(P 2 - PCp) [ 3 -Pp + W I(P2 - PCp

G P +

3 ~G 9 1 '3 PI P P V,+(3 s)2

+POp'2 + (P3 - P2 ) CpSe3'l + - P2C - P3Sp Wl12 (62)

It is necessary next to determine the partial derivatives of the
system's kinetic energy with respect to the derivatives of the general-
ized coordinates. Since some of tle velocity and angular velocity com-
ponents are not functions of all of the generalized coordinate rates,
we obtain only the following terms:

3 3
K ~ VM* M* 1 MW (3

K,eM = 4 i Vi  6 V M + i  , (63)

25 i=l
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3 3

K,Op= V  + . .I* + KA, + KE (64)
1= ',OP 1 ,1U 2i~l i=l

3

K, B, aB. (65)
i=B 110B

3 3

i=l 6G i= W

3 3+ mp V v v i" + P G J

+m j . iO B. xiO
i=l i'l3 3

+ i vB' V 0B* . + i*B )B W B

+m i 0v.i11,3 3

.=I6 +i~ l (66)

GG

(Again we neglect the gyroscopes' inertia terms such as KA, and K E,5G

We now express Equations (63) through (66) in terms of the generalized
coordinates and their derivatives. From Equation (14) we observe that

G G
I11 ,5G  W 2 60G
G (67)

• =1

From Equations (20) through (22) we obtain

0 j(68)
M M
w, = W3, M = 0
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prp
p . . =(69)
2,p 3,6p

B

B B 1(70)=2) 0"==0

2,0B '3,B

N
" =0
l G

2, =-sc (71)

caN6 = Ca
3,0G

P.

=0

2, G = p (72)

P

0 • C

B =0

3,G

B'0
BB2,6 = 0 (73)

B *=
°W3, G
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Similarly, Equations (32) through (34) give

vl. = 0VI 0

1,

V11*

2,M msax  (74)

V M*  mC

"P

v 0M

Ve = Ps (75)

3 ,ep PCp

G

vG* " =0 (76)
2.59

v G*' = 0

vM* =-m - mC

2,0G

=M 0 (77)

VM* =03,e G

P*
Vie "P2 + PC

V P*  = 0 (78)
2,G

VP * "
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VB.* -b2 "
IeG =

v VB* -  0 (79)
V2 3 G =0 I

V B* =0

3,6o
= oo

The substitution of Equations (32), (74), (20), and (68) into
Equation (63) results in

K,5M = mm [CaV3 + saVG

+ (m2 Ca? m3 s+) m & +m ]+ M1 WM (80)

From Equations (21), (33), (64), (69), and (75), we obtain

K, = CpV3 - ( s p + GK~p mp P IS VG 2 CV

+ P lJ+ el W (81)

From Equations (22), (34), (65), and (70), we obtain

K,eB = -B1  B . (82)

Substitution of Equations (14), (20), (21), (22), (32), (33), (34), (67),
(71), (72), (73), (76), (77), (78), and (79) into Equation (66) results
in

K, GG G _9G VGI B G

G  3 3 + mGg2 ( 3 V32  + B3 3

+ 2~c + MSUP+ W -

I' 2 \

+ M3& 2a+MS 3 (M3  M2 )saCa 2

+ VGi [mp(PCp - P2) - mBb 2 - mM(m2 + mC,)]
mM + m2 G m3 2)

mM (m2 + mCa) ( i2 3  P

+ mp (P 2 - PCp) PW3 + P2(3 3
SG

+ mBb 2 (b 2  - b3A) (83)
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We now take the time derivatives of Equations (80) through (83).

They are required in the generalized inertia forces given by Equation

(40). These derivatives are

t KM = (Ml + 2)i + m+ m,[c V 3 + -aVG, + (n2Ca - m3sa) ']

+ ni, m is m (84)
m[sc-V3  CaVG + (m2S +  3C Ic(4

dt K2p + mp 1 1 - mp P - s P + +P2 Cc P3 sp)Wl

dt = (i +3 e SPG 2  P

+mp P yp3 + CPVG2 + (P2sp - 3C (85)

d 3
tK;B= -B ,W1(86)

d(P 2 -P 3 ) S+Cp B (+M3 s 2+ M 2 ) 2\GFt G = ( .G -G +3 P PGI Ms)

+ m3 2 g2  3 - g2

+(P2 P3 ) SpCpW2 + (P2  P3) -) p

+ (3 - M2 c ( + 2 - M3 ) - a 2M

1 GI [me (P2 - PCp) + mBb 2 + mM (m2 + mC)]

" V G (M p P Sp P p + MM M sa 6 M)

5 I)
+ NM (m2 + mC.) (m L3 + m2 U 3 3 2

( m G
M 3 2 3 3 2 )

+ mM m s M~a () + 3 0
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+ mp P Sp P (P3 + ? P3 32

+ V 2 (b 2LP3 - b A2) (87)

The generalized inertia forces can now be written in equation form.

The combination of Equations (59) and (84) as in Equation (40)
results in

F* = - M3 - 2 wm , [(vG + r3(2  m2 w3 ) W2eM 3 1 M )+ + ) 1p

- (VG2 -m 3 G) CW W+ (V3 + m2w) sW(13
]

- (Ml + ml?') 'Mrn- mn [C' 3 + sVG2

+ (m 2 a - m3 s) G]- ml,?I~ [sV 3 - aG

(W2s + rm3Ca) (88)

Equations (61) and (85) are substituted into Equation (40). The result
is

= - M 2 mp P[(VG + pGu P2  wuFep (2 " P3 " w2 03 3 2e P G P3 2 3 '2

" (VG2 - P3 W)G CPWl - (V3 + P2 ) sp 41

PI + mPP2) *i + mp P SpVG2 + (P 2 Cp + P3 Sp)

- p P SpV3 + CPVG, + (e2Se - P3p ) . (89)
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The generalized inertia force for eB obtained from Equations (40), (60),
and (86) is

B 1 (90)

Similarly, from Equations (40), (62), and (87) we obtain

2 2 2

+ mb 2 + BI - B2 + aP(P2 PCP)2 + P -P 2C2p - P 3Sp W 12

+ [iN(m 2 + MC) (m3 - ms ) + 'M2 - M3) CXScc

+ mBb2b3 + n(P2 - PCP) (P3 - Psp) + mGg2g3

+ (P3 - P2 ) Cpsp] G G

G BA Ge
+ [mM m(C n2 + sam3 + m) + MI  2  M - 12 B

+ [P P(P - CPp2 - SeP3 ) + pl ] G Pe

+ V3W [rNg 2 + 'iT (m2 + mCa) + m~b 2

+ tn (P 2 - PCP)" - VG2' 3 [raM (m 2 + mCa) + mBb 2 + mGg 2

+ mP(P 2 - PCp)] + VG (Mm s, M - mp P Sp P)

[G 2 2 + 2 2
" 3 3 3 P 2 P +  + M2Sc

mGg 2 - N,(m 2 + nCa) m2 + m(P 2 - PCp) P

2]23 (Pp~

Bb2 [mGg 2g3 + (P3 - P2 ) s G

+ (M2 - M3 ) saC, + NM (M2 + mC) m3

+ mp(P2 - PCP) P3 + mBb 2 b3] W 2
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[mGg 2  mp( 2  PCP B + 5 1(M2 + mCa)]

- mM(m2 + mC.) m 3 - mP(P2 - PCp) P3

+ [2(3 - P2) + 2(M2 -13) saC M

Ps 6P] W
ini~i 2  2) P , P 2

+ ( 3  2) (C4 - (113 - M!2) -SC)e

-+ m s M m e e SF P2 P] G

+iMmi sim 3 eM +m P PsP 3 el2

+ mp P se(VG GI + mM m s.(VG -m 3 8M  (91)

(2) Lagrange's Form of Inertia Forces for Gyroscopes.
Here, as in the last section for the gimballed mirror system, we derive
the generalized inertia forces of Lagrange for the gyroscopes. For
any system of rigid bodies, the Lagrange generalized forces are
expressed as in Equation (40). The kinetic energy of each rigid body
element of the gyro can be expressed as in Equation (41).

Since the velocities of the mass centers of R. and Ci do not

depend on and ki, there is no need to include the translational

velocity terms in the kinetic energy. Thus, we simply write the kinetic
energies of the systems as

K A = K + KC (azimuth gyro) (92)

K = KR + KC (elevation gyro) (93)

2 2

where

i = I Ri 2  R 2\

kiC 2 i 2 +2)
R 2 12 2 1 3

Kci = Ci + Ci 2  + C i

and Rij Ci, i=1,2, j=1,2,3, are principal moments of inertia of Ri

and C. for their mass centers.
1
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We now determine the genaralized inertia forces as expressed by
Equation (40) for the gyroscopes. The gyroscope's Equation (40) is
written as

KA d 3KA

aKE d KE
F*2 7= 72 " (95)

The derivatives in Equations (94) and (95) are to be expressed in
terms of the generalized coordinates, their rates, and the prescribed

motion of the system's base mount. From Equations (92) and (93) we have

6KA  R1 R 1 C1 C1i=Z (Rli Wi wi,,3 C lli A i l (96)

RKE  R R C C

(R 2 012p + 2 21 ~ (97)

i=l

&KA  3 R1 R1 C1 C 1

= Z Rli i ei l  Cl (98)

i=l

6K R R C C
E + 2 2 + C2 2 (99)= 21W i, 2 C21 '4i  Ui,,2"

wherein from Equations (35) through (39) we find

R C
W =W 0

S1,P%

R C
RI  = P + W3C

" 2 1, ('2 s 3

R CI  P P
3 =32 2CPI W3 S
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R C2 2 p P
1i'32 1,32 2 i2

Wl2 1 3  W 2,D3 =2 -

R C
2 2w 2
'32 2,12 =0

R C

R CI. 13  =0-

R1  C
R C
3 2 2 =0

R2  C2
1,P2 1,k =

'02  0

W2$ 2

R 2  C2

3 , 2  3, 
2

Thus, we can write Equations (96) through (99) as

/K R, C 1 WA (R +A Cl +~ W
1212 +12w2 +0

+ + C 3 C 13  - (s00
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CKE ( R c 2

R + 21 1I1) (Pc PIS 2)

(R2 2'02 + C2 2 W2 w i + w2sp (101)

A 1 C) (102)

3KE R 2 13
~~p (23W3 + 23W3 ) .(13

The time derivatives of Equations (102) and (103) are

dt K o = + ")I (104)

d = .(R + C2 (105)
d '2 23 + C23)W3

The substitution of Equations (200), (101), (104), and (105) into

Equations (94) and (95) results in
F*R I R jCI  p s + 3c I

P-I R12 '02 + C12(2 2P + ~ P)

+13 1 3 3 1 - W3 Pi

.cI1

+ (R11 + C1) w1 (106)

p 2 R211 21 1 2 2 - 1 S 2

( R 2 c2(R2o + c w# oC + 2)s
c 2

" (R23 + C23) .0 (107)
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where from Equations (35), (36), and (37)

' 2  (O2C 3 iA3 S

1 1 P P
1 w13 w3C 1  +w2  p3

W I=W 1-1

R 2 C2 P

R2 2 P P

(2 2c P - to

0 2 p p

w3 W3 '2

so that Equations (106) acid (107) are finally written as

F* -R+ C012) (C~ - s s ') Ws~ + W C)

+ 12  3 D + W(j) 3 1

+ (R1 + C13 W( C~ + Ws 3)wC -' s ~~~

+ (R 11 + C11 "; (108)

F* (R 1 + W21) ()C + W s ) S -W Cp

(3~~~ 2 2'1P 2p - I+2  2~~c ) (P P2

(R 23 + c 2 3)( P + 2) *(109)
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d. Active Forces

Active forces acting on the system of rigid bodies are
those due to friction, gravity, deformable wire drive (massless) con-
nections, spring tension due to electrical conductor connections between
moving parts and torque motors.

The wire drive is assumed to deform according to linear elasticity.
The wire drive is attached to the platform and mirror wheels in tension.
That is, there is a force of F in a wire segment when there is no0

movement of P, M, and B and ep = eM = 9 = 0. The wire can be stretched
P 14 B

or its tension can be reduced by relative move,znt of the wheels of P,
M, and B. Figure 8 shows the configuration of the wheels and wire drive
with critical dimensions. Free-body diagrams of the wheels showing the
wire drive forces and the relative rotations of the wheels are also
depicted. Consider first the wire of length S, between the mirror and

L.

platform wheels. The wire has a cross-,'ectional area, A, and a modulus
of elasticity, E. The increment in force in this wire due to the
relative rotation of P and M is

Ly I = (EA/S 1)(r pe - rMeM). (110)

Similarly, the increment in force in the wire between P and B is

Fp= (EA/Sp) (rBeB - rp%) (111)

and the increment in force in the wire between M and B is

AF = (EA/SM) (rM e - rBOB) . (112)

The moment of the forces due to the wire acting on M obtained from
Equations (110) and (112) is

T r M(F + AF Fo -6F

= rM [Kl(re " - re 1m) + K(rBeB e rM M) j&1  (113)

where

K1 = EA/S 1

KM EA/S M

38



rp $1 . rM

W DRIVE

(a) CONFIGURATION OF THE WHEELS AND WIRE DRIVE WITH DIMENSIONS.

F + A F 1  F - +3 1 1,

P M

op

F0 + F PTO+-F

0
B

(b) WIRE DRIVE FORCES ON WHEELS FOR RELATIVE ROTATIONS.

Figure 8. Wheels and wire drive configuration, dimensions, and forces.

Equations (110) and (111) are used to obtain the moment of the forces

due to the wire acting on P and give

Tpw rp(F ° + AFp -F ° -AF)

= rp[KP(rBOB - rPOp) + KI(rMOM - rpOe)I P (114)

where

Kp = EA/Sp. Likewise, from Equations (111) and (112) we obtain

for B under the assumption of no slip between B and the wire

T8W = rB(F + Ap - F -AF-B Boo 0 FMl I

= r13[KI(rBOB - rp1p) + KM(rBOB - r MOM)] A1  " (115)
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Coulomb friction torque on the mirror is written as

41C = -CM sga (6M) a . (116)

For the platform we have

T -C sgn (0p) aI (117)

and for the balancer

!BC 2 CB sgn (eB) 1 (118)

Similarly, we denote viscous friction torques on M, P, and B by

= -Nm eM y (119)

Tpv = -Np e I (120)

TBV = NB eB Y- (121)

For the gimbal, G. the Coulomb effects are expressed as

TGC =-C G sgn (G) Y3

+ (CM sgn (eM) + Cp sgn (e - CB sgn (eB)] Y (122)

and those due to viscous effects are

T =- G sgn (6G) a 3

+(NI OM + NP e - N (123)

Gravity force torques are not zero since there are mass unbalances.
The mirror's gravity torque in the ml, i 2 , m3 basis is

!MG = mM m g I[sa(SRSAE+ CRSE)C G + sa(sRCA)sG

+ Ca (CRCE) - Cay (SRSASE)] 21

+ [(sRCA)CG - (sRsACE + RSE)SGI m 3  . (124)
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Likewise, the platform's gravity torque in terms of p1 P-2 1 23 is

T = ~g~[C (Ss CC
PG P g [ PSRAE - p(CRCE )

+ sp(sRSACE + CRsE)CG + sp(SRC)SG 1

+ [(sRsACE + CRsE)SG - (SRCA)CG]} 23 (125)

and for the gimbal, G, we have

GG = mG g{[g 2 (CRCE - RSASE  - g3(CG(sRsACE + CRsE)

+ (SRCA)SG)]3l + g3 [sG(SRsACE + CRSE) - (SRCA)'G] L2

+ g2 
[(SRCA)CG - (sRsACE + CRSE)SG] a3} . (126)

The electrical conductors which connect between the gimbal, G, and
the platform, P, exent a spring torque on the platform and gimbal. These
torques are expressed as

Tp S = -Ks ep l (127)

for P and

TGS = KS 0P 8 " (128)

(1) Generalized Active Forces for the Gimballed Mirror
System. The generalized active forces for each elemnent of the system
is determined by

BF) B 1 TB (129)
B

where B denotes one of the rigid body elements and TB is the torque

of the moment about the axis of rotation of all forces acting on B.
From Equation (14) we find

G G G(
-sbe R 0 (130)-0M B-,P

G.
E- G  R " (131)
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Equation (20) is observed to give

. 0 (132)

P B

El (133)

M

J,'e sa 2 + Cam3  . (134)
G

Similarly, we obtain from Equation (21)

P P
'~0 =  =: (135)

14 B

. = (136)-'p P-1
P.

~(a) sPP2 + P 3 =a 3  (137)

and from Equation (22)

B B 0 (138)--' -- 0 -

B (139)

B (140)

G

Now, from Equations (122), (123), (126), and (130) through (140), we

obtain

F) =FP) = Fe3) =0(141)

Fe) =C sgn Q5.) -N G sgn (G)

+ mGg g2 [(SRCA)CG " (SRSACE + CRsE)sGI "

(142)
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The contributions to the generalized forces by the forces acting on M

are

Fl = F) =0 (143)

B)M PM

FG) = mg Ca[ (SRCA)CG " (SRSACE + CRSE)sG] (144)

FO(M9 = rM[ KI(rpep - r MOM) + 1I(rBOB - rMOel)]

- CM sgn M  "?M

+ 'g [sEa(SRSACE + CRSE)CG

+ sa(sRCA)sG + Ca(CRCE) - Ca(sRsAsE)] (145)

as seen from Equations (113), (116), (119), (124), (132), (133), and

(134). Similarly, from Equations (114), (117), (120), (125), (135),

(136), and (137), we find

FB)p = FOM)p = 0 (146)

Fp) = rF[K (rBOB - rp0p) + KI(rMOM - rpOp)]

Cp sgn (p) -Npp

+ mpPg [CP(SRsAsE) Cp(CRCE)

+ se (sRSACE + CRsE)CG + sP(sRCA)sG] (147)

FOG) = m ~pgCe[(SRSAC g + CRSE)SG - (sRCA)CG] (148)

43



The contributions to the generalized forces by the forces acting on 3
are

Fe = F FeG 0 (149)

FeB)= -rB[KP(rBeB - rpep) + K I(rBeB - rMel)]

- sgne)- NB . (150)

(2) Generalized Active Forces for the Gyroscopes. The
only forces acting on the gyroscope elements are those due to friction,
gravity, and the servo drive, gimbal precession, torque motor. The
friction forces are dtiscribed as viscous friction. The torques of their
moments for the azimuth and elevation gyros are

T =N C' C1
-AV A 1 -11 (151)

-V = -N 2 -23 " (152)

The gravity forces do not affect the system's motions since the torques
about the mass centers are zero. The gimbal precession torque motors
of the gyroscopes are active only when the platform is servo driven in
a slewing or tracking mode. When the precession torque motors are
active, they provide torques proportional to an external rate signal
generated by, for example, a manual tracking stick or contrast TV
tracker. These torques are not functions of the generalized coordinates
and can be added in later.

To determine the generalized active forces for the gyroscope
systems, we refer to Equation (129):

CI

CI
1

= F) F RI 1 F) F 2

/2C 1 1 2 ) /R 2

=F 0 (154)

R I

Fr TEV = 2 3 " -N E 2 22 3 = "NE 2 (155)
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wherein w ete are determined from Equations (235), (236), and (237)-' 1

and TAV, V are given in Equations (151) and (152).

e. Complete Nonlinear Equaticns of Motion

a tThe equations of motion of the gimballed mirror system
and the gyroscope systems are now obtained by simply setting to zero the
sum of the generalized active forces for each generalized coordinate
and the corresponding generalized inerria forces; i.e., we form

J°6K d 6K

F9 + F0 = Fe + T - T = 0 (156)

for 0 replaced with each of OM, P' OB' OG' Pl, and 02. From Equations

(88), (141), (145), (146), and (149) and the fact that

F FM)M + FO) + F + Fe

we obtain for em

rM[Kl(rPOP - rMIOM) + KM(rBOB -rMM)]

C Msgn (6M)- VM+ 1& mg[sa(sRSAE + CRSCG

+ sa(sRCA)sG + CO(CRCE) - Ca(SRSASE)]

(Ml + m rm2) OM +M 2) M M
W i + I + (2 "M3 "mIPm '°2 '°3

+ m [(VG, + m3 U - m" 2 (VG m3 uI) C)W I. (

+( 3 + m2 )s 1  ml a + G2

+ (m2 C - m3 sU)] -mm CV3 CVG

(m2 s + m3 C)] 6M 0 . (157)
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Similarly, from Equations (89), (141), (143), (147), and (149) we have

for 19

rp [Kp(rBOB - rpep) + K,(r1e,, - rplp)] Cp sgn (ep)

N Ne6p + m e g[Cp(s RAsE) - CP(CRCE)

+ se(SRsACE + CRsE)CG + se(sRCA)sG]

-(PI + mp P2)P + - - mp P

+ (P2 C + P3 1 sp)I~ -mp P~V 3 S pVG2

+ (P 2 Se- P 3 'p)2W 3e P P

+(P~p~PCp~c~]9O .(158)

Likewise, from Equations (90), (141), (143), (146), (150), and (156),

we find for 0B

-rK(rBOB - rpOp) + K(rBeB -r

c~sgneB)NB11 0(159)

For eG we determine from Equations (91), (142), (144), (148), (149),

and (156) that-"G sgn (G) -NGOG + mG g g2 [(SRCA)CG "
- (RSACE + CRSE) sG ]

+ mM m g C[(SC)CG - (SRS A0E + CRSE ) s G]

+ p P g Cp[(SRSACE + GRS E ) sG " (SRCA) CO

322w 2 2 2G-p~~

- 3 +B +P +PP3 s + C+p

3 2 2 6
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22

+ mG g2 + MM(M2 + Mm 2 +)PP PC)

4 + mB b 3 + 2 " + mG + rM(m 2 + iV 2

+ 1 - 2 - 2 22
1 2 M3 s + Bb3 +B - B2 + mp (P2 Cp)

+ .2  
+ sJ 1 + [other terms in Equation (91)]. (160)'01Gw2

The equation for f3 is obtained from Equations (106), (153), and (154)
and is

A3l+(R11 + c11)~1  1  1 ++Cwc1

R + C p .0.3161

R134' + C13C33 (2C P 0

From Equations (107), (154), and (155) we obtain for 62 that

C R2  C

- R22 32 + C22 3)2(o1 + C2s1 0 2 (12

3. Analysis of Equations of Motion for Special Cases

The equations of motion given in Equations (157) through (162)

are nonlinear and quite complicated with various orders of cross-coupling
terms. Besides the usual single rigid body cross-coupling terms, the
equations contain significant cross-coupling terms due to mass unbalance,
base motion, and band drive deformation. We shall now put the equations
of motion into a standard form of a system of first-order differential
equations suitable for numerical solution by a forward integration
scheme such as a fourth-order Runge-Kutta.

In the equations of motion, the variables Vl, V2, V3 , A 0E' 0R'
CA' 4E' and *R and their derivatives are known functions of time from

the dynamics of the base or from measurement data. We must specify
initial conditions in solving the system of differential equations; i.e.,
we must specify that at time t = 0, the values 0 eG, em, eM , e, ep.
0B 1 b B) 1 ', 3 ' and f' Then from Equation (14) we can calculate

V G I G 2 . G 2 " Gthe values of l(O), w2(0), w(0), and from Equations (20), (21), and
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(22) we can calculate wi~() w~0, (0), W4(0), w(0), Ci(0), Ci4(0).

Following these calculations, we determine from Equations (36), (37),
C C C 02 02

1 1 2(38), and (39) the initial values wI1 (0), W2 (0), 63 (0), W1 (0), W2 (0),

C2 R R R
'03 (0) and from Equation (35) the initial values 12 (0), 3 (0), 1 (0),

R2

and wi2 (0). With these initial conditions we solve the gyro Equations

(161) and (162) and the following set of 33 first-order differential
and algebraic equations:

V =C V + s V (163)G GI 0 G2

VG = G V2 - sG V1  (164)

2

SI =PE + RS (165)

Ci) ~co ~~s(166)
2

eS = RCAE ASE(66

WS)3 ;ACE - ;RsECA (167)

WI CG + WS s (168)

1 2

1 G\S2 G - S + "SICG + G (169)Gl WG2CG " s2s

2 =  C - (SlSG (170)

2 1

Ci)2 =-GsICG + S$ 2 G -SlSG (171)

P 0G
2 = CpG + SpG (172)'2 P'2 P'3

3 = Cp3 -G G (173)'3 P'3 SP2

C.Cl P P
Ci = Cl 2 - s 3  (174)2 1 11
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c s p +c p
(A)3  SW 2 +C 3 3  (175)

R C
12 (b)2

1  A (176)

R C

03 3 (177)

= C G G
2 -) Sa'0 3  (178)

( 3  a ( 2 +Cab) 3  (179)

0 2 p p

2 2 2(10

2 2(A2 2 W 11

wR 2 wC2

1 1 G12

I4 1 1 (184)

5p w P w G
P 1 1 (186)

e ) B 1 (187)

- A1 - A1  (188)

C

2 -3 (189)
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'.M ~ -1 f( 2 M3

(Ml + O' M2-3 2 13

c 01 sgn (b14) - NM6M

"+r(K 1(r pep r14e1 ) + K(re B -rle 1 )]

"+M m g [sa(SRSACE + CRsE)CG + sa(sPCA)SG

+ ca(R E)- Ca(sR s ASEA

+ mm m 4 - m wG 14

LVGi 3 2 3 '2

(V (2 - M /(41 CCIW + (VI + m2 JG)Sa ,

- m14  + CI 2+ (m2C. - m3s.) b')

- mM m-[say3  2 + (m 2s, + m3 G ) I 1 } 1 0

p+ m P iP_ -p - mP 2 I)
"'1 2k-l wJ I /2 '3

- sgn (5p) - Up.p+ r p[%p(r BOB - rpep)

+ K1(r4014 - rpe P)] + mpP g[ sRsAsE

- C p(CR CE) + s p(s RsACE + CRsE )CG

+ s (sRCA)sG- m~ P(G + p~w - P

- (V G 2- p 3(i)) c P w - (V3 + P )s

+ m [C - sPVG 2+ (P2C +* G~)w]

-mPsV+CV + (P s-P C) w G] E}(191)
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*B -1 sg
B 1 B B s 5B) NB6B

+rB[(rBeB - + !(rBOB - rM&M)]} (192)

*cG 2 2 2 2+ 2
w G 3 + B3 4 pC + P2s2 + M3 + M2s + mG 23 3  3 3 P 3 ~ ~ mg

+ nm,(m2 + mCO)m2 + mp(P 2 -- P Cp 2

+ mnb 2 I - G + g2 + m",(m2 + iC)
2

B 2 2 2

+ MI - b1s +Mb + BI - B2+ m CP - 2+ P2Cp- P3Sp+ m(2

M(P 2  P Cp) + PI 2 2] I GG

-CG sgn (G) NG'G

+ mG g 92SRCACG - SG(SRsACE + CRSE

+ mM g m C[sRCACG - s(SRsAC + CRY ]

- mp g P Cp [s RC ACG - sG (s RS ACE + CR sE)

+ [other similar terms from Equation (91)]} (193)

(R., + C1 )-1 [(R1 2w+2 + 22 + (3CL )

+ s po2C1  13w3 + C1 3b)3  + NAJ (194)

.c + 1 F RY C ~ 2 ) ( PC P
3 "2'R23 + u23)- R\21 1 2 , C21 1/ .~2' 2 - W1 s 2)'

- R 2 + cC 2 )~ (\)1f3 + c02sf)- NEJ (195)(=R22 21Wl + I C 2 D 2  E l51
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These equations become quite simple for the three special cases of:

a) Small vehicle motion: 4A E z VR P VI 1 V2 l V3 0

with their derivatives

b) Small mass unbalance: m ; P ; 92 - 0

c) Small deviations from system looking forward:

eM eM e G G 0 B B Pze ep b P A E R

1 1 2 2

d) Small motions and mass unbalances.

In Case a) the equations become:

V V =V =0
G G 2 3
%1 %2 %

2 3

G G
W1 

= 02  0

•G .Gb=)20

M GW2 = sUW3

M G
"3 Ca3

P G

2 2 = S3

P G

C

3 =p(3

CI

2 = WI2 "Sl3

CI  p P
W3 S P 2  C Pi 3

R C
W'2 = 2 "
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R I  CI

53 W3

02 21 P22oIi = S + b2
C2 p P

W2  CC2
1

R2  C
R2 =2 -
2 W2

4 G

G '3 S 3
*p

ep 'I~

* B
B -'

-cM 1g M
0 2 P

~2 ' 3  (13

W, M + 02)-1 {(M2  M 3 -. 2 cJ'13

- sgn 5M N MOM

+ rM[KI(r - rMIM) + KM(rBO - rM6M)]

+ CU m mm2 W3 w2
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.p + mpp2)-l {( pr mpp 2) P P
(P I =  2 " 3 W c2 '03

C - p sgn P~) - w p
+ rp[Kp(rBeB - rpep) + K 1(re -

-mp P g Cp + mp e P2 P1

K ~ ~ O -1g~m

W Bi CB sgn 6B) + NBe

+ rB [Kp(rBeB - reep) + KM(rBeB - rMeM)]}I

.f +B p 2 2  2 2 2
3G3 + B3 + P3C P S+ M32 + M2so ' Gg2

P3 3 3 3 P 2 P 3Ca ~ m

+ mM(m2 + mCa) m2 + mp(p 2 - P C) P2

+ mBb } {2CG sgn ( -G) NGeG

- (m + mCm -m( 2  P)

+ 2(P3 - P )s C O0 + 2(M142 13 )s aC a m + (P3 -p) ' -2

3m4  m 2 ap p P 2 PP 3
MM mMmm2 'a5M -mp P P 2 Sp p w3 + (M 3" M2) C2  s2 6)M

2 p 2 p6

mp sp 3 e P mM s. 3

Equations (194) and (195) remain the same in this case.

In Case b), Equations (163) through (189), (192), (194), and (195)
remain the same. The other equations become

O M -1 M 1

1= 1 1 (M2 - M3) 02 03 - CM sgn if

NM5 M l.rM[Kl(rpOP - rMeM)

+ KM(rBeB - rMeM)])
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•P -1 PJL) =2 P3 ) '2 43 "Cp p

-Npep + rp[Kp(rO

+K 1 (rO -r 'P('

+ KI (rOM - rP1p)

G 2 +2 2 2
3.~~ +G+J+CM Ms

(03 2 3 + B3 + P3c + P2S p + P13C + M2s q

+ mw 2 + mpP2 + mBb 2] 1  " 02

+M 22 ,P 2 2

2 2 2
1 2CC, 3C B 3

+B B + mP P2 + P2 PCp P3S 2] W 2
12 P 2Tr 1  -2 P 3 P 1 i 2

-C G sgn 6G - NGO;

+ [mnm 2 m3 + (M2 - M3) seCa + mBb 2 b 3

+MPP G G MIG

mP2P3 + (P 3  P2 )CpSp ]  3 + 1  M

-BwO +V3G + + + P G
I W2B 32 (mgm2 mBb 2 +meP 2) + "P

SVG2 03 (mm2 + mBb 2 + mpP 2 )

+ [(P 3 " P2 )spCp + (M2 - M3 )sACa + m14m2m3

mP2 P 3 + mBb 2 b3 ] 2 + (mpP 2 " mBb 2  mMm 2) GI

+ 2[(P 3 - P2 )SpCp p + (M2 - M3 )S<ICJM0 '

+(( P C2 2 2 2 G
[(P3  PCp - slpl + (M3 - M2) (C 2 - s.) ] 2

In Case c), we obtain the linearized differential equations whichhave only linear terms in the dependent variables except for essential
nonlincarities like Coulomb friction. Also added are torque terms which
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would result from a torque motor driving the platform (Tm ), gimbal

p
(Tm ) , azimuth gyro (T mA) and elevation gyro (Tm e) In this case we

obtain

V1 V1

VG2 = 2

OS2 = R

0c) =

3 A

G

1i S
11 W

.0
W I '

G(02 6= 
S 2

G 9 S
W2 O

P G
'2 6)2

P G
3 = 3

M G G
u)2 Caw)2  sa"

M G + G
3 'a 2 c3

C I  P
W 2 = (2

C I  p
3 = (3

RI  C

"2 = 2 " '
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R C

W3 '03

C 2  p
"I =W6

1, 1

(W2  U)

R C
12 2

R 2 C
W22=f. 2 -w

MG

0G '3 WS3

bpP 1 G"

e G B

p c4 1
w C l

c2

=(MI + V2)-i {-CM sgfl b NMbM

+ rM[K 1(rOe - rMeM) + KM(r B e- rMeM)]

+ tmmmg cc - mm m( 3 + (m2C G\ms

=(Pi + m p ) ~cp sgn 6 p - N p p

+ r (K (r e r- + K (rmem - re)

-V 

+ P2 + + + TM
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B -1l= BII CB s B NB B

+ rB[Kp(rBeB - rep) + KM(rBeB - reM)]}

G = G3- sgn -N G + r

+ - C + mm 3 (m2 + mC.)

+ mpp3 (P 2 - P) + mBbmb3J wG - [mbg2

- mP(P 2 - P) + mBb 2 + mM(m2 + mCa)] VG

- (m2 + mC()m 3- r p(P2 - P)P w3 + T mG
1 = R C -1 [NAl + w3(R12 21 + C1 2 W2 ) T]

C2-1 W F2+ C2)\= -(R 2 3 + C23 -) 1 E 2 + w1IR 2 232 + C2 2 2  -

If we assume that the mass unbalance of M and P are negligible and
all motions are small, we have Case d). In this case the equations of
motion are:

MI + E)+ NMM + CM sgn 6M+ r2(Kl + K 1)0M

rMrpKlP - rMrBKMB = 0 (196)

P 6P 6 + C sgn p + re(KI + K )0
E)1' p p ppI p p

- rprMK1O1M - rprBKpO B = Tmp (197)

B  +NBB C sgn + r2(Kp+
1(6B A + CB 6B + Br KM B

rBrpKp P - rBr MI M = 0 (198)
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G 33(6G + CA)+ NGG + CG sgn G- R[mGg 2 g3

+ (M2 - M3 )C2 + mn, 2m3 + rpP 2P 3 + mlbb2 b3 ]

+ Vlfm~g 2 - mpP 2 + mBb2 + mlm 2 = T (199)

(R11 + ClI) l - E) + NAk1I - R2 G + A = TmA(l)
A.0

(200)

(R23 + C2 3 )( 2 + + A) + NEf 2 - wR2 2 (P + = (X2 )

(201)

These linearized equations for a perfectly balanced system are
normally used in the design of control compensators for system.
Equations (196) through (201) are put in state variable form in a block
diagram in Section 4.

4. State Variable Block Oiagram

A block diagram of Equations (196) through (201) for Ca,;e d),
suitable for programming an analog computer, is presented in Figure 9.
The output of each integrator is a state variable. Figure 9 is shown
for a closed-loop system; i.e., it not only shows the gimbal dynamics
and the gyro sensor's dynamics but includes blocks representing torque
generators (motors) for driving the gimbals and blocks for compensators
to give the desired closed-loop response. The details of the torque
generator blocks and compensator blocks are not shown since they have
been adequately defined in References I and 2, or they are to be
designed. It should be noticed in the block diagram that the gyro blocks
could be simplified by reducing their orders, i.e., the number of
integrators. This is equivalent to pole-zero cancellation and can cause
a reduction in system analysis information.

5. Conclusions

The full nonlinear equations of motion can be used to analyze
the system for both large and small base motion inputs and for large
platform motions such as occur in tracking or acquisition. However,
only the inner loop or stabilization loop has been considered in the
derivation.
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Linearized equations are valid for large angles of pointing from
the forward-pointing orientation if angular rates are small and one
linearizes about the new, large angles.

All forces acting on the system have been expressed in terms of
the states of the system by carefully considering such affects as
prestress in the wire drive, precise geometry and stretch of the wires,
Coulomb and viscous friction, mass unbalance torques due to gravity
and accelerations, and torques produced by the electrical wiring. From
observations of the movement of the system in the laboratory it was
found that Coulomb friction and electrical wiring (flex lead) torques
were greater than those due to mass unbalance.
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SYMBOLS

S, G, M, P, B Characterizing the Base, Gimbal, Mirror,
Platform, and Balancer

(t), R(t) Independent azimuth, elevation, and roll
angles

eG Angle of rotation of the gimbal, G, with
respect to the Base, S

e Angle of rotation of the platform, P, with
respect to the gimbal, G

eM Angle of rotation of the mirror, M, with
respect to the gimbal, G

eB Angle of rotation of the balancer, B, with
respect to the gimbal, G

S G M P B
E G ,A , Inertial angular velocities of S, G, M, P,

and B

eI' 2' 83 Base vectors fixed in S

P1' P2' P3 Base vectors fixed in the platform, P

i' 22' M3 Base vectors fixed in the mirror M

Fi' F2' R3 Base vectors fixed in the gimbal, G

11, b2' b3  Base vectors fixed in the balancer, B

G Point in S and G for which motion is
prescribed about

P0M B0  Centers of rotation of P, M, and B

P0 M0, b Distance vector from GO to P0, M0, and B0

G, P, M ,B Centers of mass of G, P, M, and B

0, p; 21, b Position vector o center of mass from

center of rotation

V V P *, VB* Velocity of centers of mass of M, P, B in
the inertial frame

oK K K 6 K Partial derivatives of the total kinetic

' B' '60 energy with respect to the generalized
coordinates eM1, eB, ep, eG

K,6 ; K,eB ; K,ee ; K,eG Partial derivatives of the total system
kinetic energy with respect to the derivatives

of the generalized coordinates
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F OM  F ep F0 B F0G  Generalized inertia forces for M, P, B, and G

FB 2 FB Generalized inertia forces for the gyroscopes

T 'T T Moments of the forces due to the wire band7-W -7 BI? drives acting on M, P, and B

T T T T T Coulomb friction torque acting on M, P, B,
=MC -PC "BC -;-Cad and G

T T T T Viscous friction torques acting on M, P,IV ' -V --BV -GV B, and G

T 'T , T Torques acting on M, P, and G due to mass
-MG -PG -GG unbalance

P T SSpring torque forces acting on P and GPS - due to electrical conductors
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